Good! Also keep in mind that if the signal-to-noise ratio is too low, the doublets might be difficult to see

# Jigsaw 1B

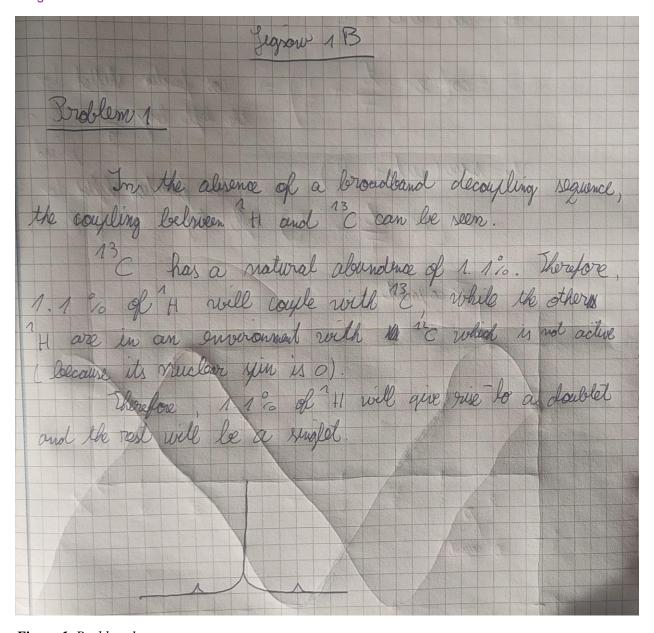



Figure 1. Problem 1

Students: Octavian Susanu, Oscar Rosseneu Victoire Jaqueline Françoise Lang,

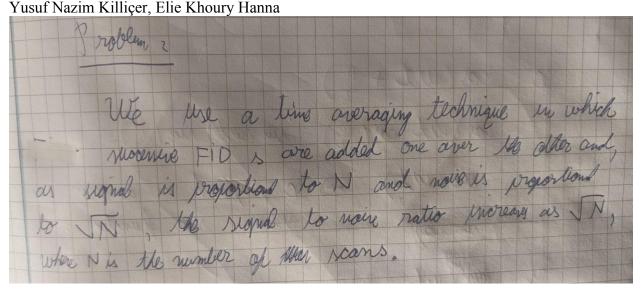



Figure 2. Problem 2

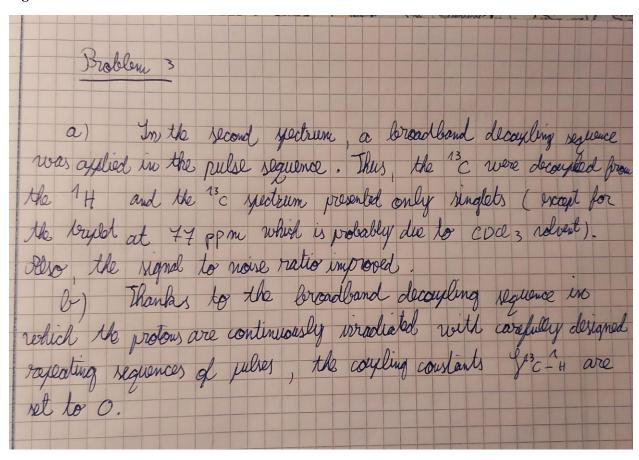



Figure 3. Problem 3.

Yusuf Nazim Killiçer, Elie Khoury Hanna T is the word; the plot is done

for a reletor rectaing in a

y compount wick of reading 1 0 e-component E = cos (wt + 17) = = cos (wt) cos ( ) - sin (wt) sin (t) = - sin (wt) -> E component is a man
Ainth sine function mener y = in ( w t + 12) = = cos (ub) ru (r) + sin cub) cos (r)= = cos (ub) = y component is a costal

Figure 4. Problem 4 a.

Yusuf Nazim Killiçer, Elie Khoury Hanna B. O. 785 4 radions IT radions The cost with the sound of the last of a period of lay is ( ) of a period )

Ley is ( ) of a period ) y component component

Figure 5. Problem 4 b.

Students: Octavian Susanu, Oscar Rosseneu Victoire Jaqueline Françoise Lang,

Yusuf Nazim Killiçer, Elie Khoury Hanna  $x = \cos(ut + \frac{110}{4}) = \cos(ut + \frac{110}{4} - 20) = \cos(ut + \frac{30}{4}) = \sin(ut + \frac{30}{4}) = \cos(ut + \frac{30}{4}) = \sin(ut + \frac{30}{4}$ 

Figure 6. Problem 4 c.

Students: Octavian Susanu, Oscar Rosseneu Victoire Jaqueline Françoise Lang,

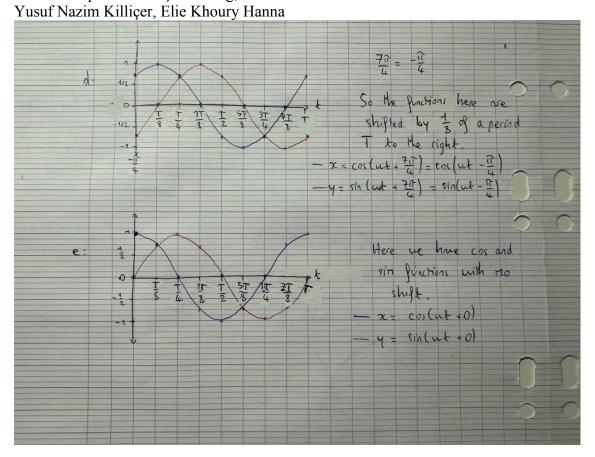



Figure 7. Problem 4 d+e.

#### Good job!

#### JIGSAW 1B

#### October 14 2024

### • Question 1

Good! Also keep in mind that if the signal-to-noise ratio is too low, the doublets might be difficult to see

We know that 'Scalar coupling can occur between any magnetic nuclei which are reasonably close on the bonding network' [chapter 2.4.1 Heteronuclear NMR and Broadband decoupling, Understanding NMR spectroscopy, second edition, James Keeler]. The natural abundance of the carbon 13 atom is 1.11 % and it has a nuclear spin of  $\frac{1}{2}$  like hydrogen, making it NMR-active. We can therefore observe heteronuclear  $^1\text{H-}^{13}\text{C}$  coupling in a CHCl<sub>3</sub> sample at natural abundance. This coupling would appear as very small signal next to then main uncoupled signal.

### • Question 2

To improve the signal to noise ratio, we use *time averaging*, that is repeating several time the same measurement, then adding together the *free induction decay signal* (the received response of the sample). The signal add linearly, while the noise average itself and grows by the square-root of the number of measurements.

Over N measurements, the signal to noise ratio grows by  $\frac{N}{\sqrt{N}} = \sqrt{N}$ .

### • Question 3

a) When recording <sup>13</sup>C NMR spectra, scalar couplings between <sup>1</sup>H-<sup>13</sup>C and <sup>13</sup>C-<sup>13</sup>C nuclei can often be observed, resulting in complex, broad multiplet patterns.

In the case of the two quinine spectra:

- $-\,$  The first spectrum displays several multiplets, indicating the presence of both  $^1\mathrm{H}\text{-}^{13}\mathrm{C}$  and  $^{13}\mathrm{C}\text{-}^{13}\mathrm{C}$  couplings.
- The second spectrum shows only singlets, suggesting it was recorded with <sup>1</sup>H-<sup>13</sup>C couplings removed.

To suppress heteronuclear couplings during  $^{13}$ C acquisition, the pulse sequence was modified to include a broadband proton decoupling sequence.

b) This change eliminates the multiplets because this broadband proton decoupling sequence involves a designed continuous irradiation that selectively targets  $^{1}\text{H}$  nuclei, effectively reducing  $J_{(^{13}\text{C}^{-1}\text{H})}$  to zero, thereby simplifying the spectral analysis. Indeed, only single peaks will be visible on the spectra at each shift.

## • Question 4

Missing the second part of the question (comment on whether they are simple sine/cosine functions)
- see above solutions

For the following plots :  $r\sin(\omega t + \beta)$  and  $r\cos(\omega t + \beta)$  were plot choosing arbitrarily r = 1 and  $\omega = 1.5 \, \text{rad/s}$ .

#### x and y are swapped for a and b

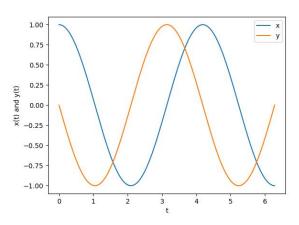



Figure 1: Plot a :  $\phi = 90^{\circ}$ 

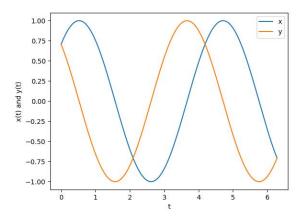



Figure 2: Plot b :  $\phi = 0.7854$  rad

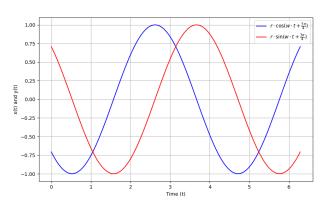



Figure 3: Plot c :  $\phi = 495^{\circ}$ 

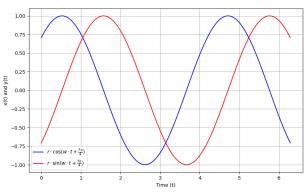



Figure 4: Plot d :  $\phi = 7\pi/4$  rad

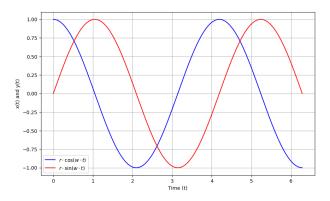



Figure 5: Plot e :  $\phi = 0^{\circ}$ 

Which is the x component and y component for these 3?